Moduli spaces of vector bundles on a singular rational ruled surface
نویسندگان
چکیده
منابع مشابه
Moduli Spaces of Vector Bundles over a Klein Surface
A compact topological surface S, possibly non-orientable and with non-empty boundary, always admits a Klein surface structure (an atlas whose transition maps are dianalytic). Its complex cover is, by definition, a compact Riemann surface M endowed with an anti-holomorphic involution which determines topologically the original surface S. In this paper, we compare dianalytic vector bundles over S...
متن کاملIrreducibility of Moduli Spaces of Vector Bundles on Birationally Ruled Surfaces
Let S be a birationally ruled surface. We show that the moduli schemes MS(r, c1, c2) of semistable sheaves on S of rank r and Chern classes c1 and c2 are irreducible for all (r, c1, c2) provided the polarization of S used satisfies a simple numerical condition. This is accomplished by proving that the stacks of prioritary sheaves on S of fixed rank and Chern classes are smooth and irreducible. ...
متن کاملA Note on Moduli of Vector Bundles on Rational Surfaces
Let (X,H) be a pair of a smooth rational surface X and an ample divisor H on X . Assume that (KX , H) < 0. Let MH(r, c1, χ) be the moduli space of semi-stable sheaves E of rk(E) = r, c1(E) = c1 and χ(E) = χ. To consider relations between moduli spaces of different invariants is an interesting problem. If (c1, H) = 0 and χ ≤ 0, then Maruyama [Ma2], [Ma3] studied such relations and constructed a ...
متن کاملMODULI SPACES OF SL(r)-BUNDLES ON SINGULAR IRREDUCIBLE CURVES
One of the problems in moduli theory, motivated by physics, is to study the degeneration of moduli spaces of semistable G-bundles on curves of genus g ≥ 2. When a smooth curve Y specializes to a stable curve X , one expects that the moduli space of semistable G-bundles on Y specializes to a (nice) moduli space of generalized semistable G-torsors on X . It is well known ([Si]) that for any flat ...
متن کاملIrreducibility of Moduli Spaces of Vector Bundles on K3 Surfaces
Let X be a projective K3 surface defined over C and H an ample divisor on X. For a coherent sheaf E on X, v(E) := ch(E) √ tdX ∈ H∗(X,Z) is the Mukai vector of E, where tdX is the Todd class of X. We denote the moduli space of stable sheaves E of v(E) = v by MH(v). If v is primitive and H is general (i.e. H does not lie on walls [Y3]), then MH(v) is a smooth projective scheme. In [Mu1], Mukai sh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geometriae Dedicata
سال: 2015
ISSN: 0046-5755,1572-9168
DOI: 10.1007/s10711-015-0108-2